FalkorDBVectorStore
FalkorDB is an open-source graph database with integrated support for vector similarity search
it supports:
- approximate nearest neighbor search
- Euclidean similarity & Cosine Similarity
- Hybrid search combining vector and keyword searches
This notebook shows how to use the FalkorDB vector index (FalkorDB
)
See the installation instruction
Setup
# Pip install necessary package
%pip install --upgrade falkordb
%pip install --upgrade tiktoken
%pip install --upgrade langchain langchain_huggingface
Requirement already satisfied: falkordb in c:\users\dell\desktop\langchain\.venv\lib\site-packages (1.0.10)Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: redis<6.0.0,>=5.0.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from falkordb) (5.2.0)
Requirement already satisfied: async-timeout>=4.0.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from redis<6.0.0,>=5.0.1->falkordb) (4.0.3)
Requirement already satisfied: tiktoken in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.8.0)
Requirement already satisfied: regex>=2022.1.18 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tiktoken) (2024.11.6)
Requirement already satisfied: requests>=2.26.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tiktoken) (2.32.3)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (1.26.20)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (2024.8.30)
Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: langchain in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.3.9)Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: langchain_huggingface in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.1.2)
Requirement already satisfied: PyYAML>=5.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (6.0.2)
Requirement already satisfied: SQLAlchemy<3,>=1.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.0.36)
Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (3.11.8)
Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (4.0.3)
Requirement already satisfied: langchain-core<0.4.0,>=0.3.21 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.3.21)
Requirement already satisfied: langchain-text-splitters<0.4.0,>=0.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.3.2)
Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.1.147)
Requirement already satisfied: numpy<2,>=1.22.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (1.26.4)
Requirement already satisfied: pydantic<3.0.0,>=2.7.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.9.2)
Requirement already satisfied: requests<3,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.32.3)
Requirement already satisfied: tenacity!=8.4.0,<10,>=8.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (9.0.0)
Requirement already satisfied: huggingface-hub>=0.23.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (0.26.3)
Requirement already satisfied: sentence-transformers>=2.6.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (3.3.1)
Requirement already satisfied: tokenizers>=0.19.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (0.20.3)
Requirement already satisfied: transformers>=4.39.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (4.46.3)
Requirement already satisfied: aiohappyeyeballs>=2.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (2.4.4)
Requirement already satisfied: aiosignal>=1.1.2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (24.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.5.0)
Requirement already satisfied: multidict<7.0,>=4.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.1.0)
Requirement already satisfied: propcache>=0.2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (0.2.0)
Requirement already satisfied: yarl<2.0,>=1.17.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.18.0)
Requirement already satisfied: filelock in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (3.16.1)
Requirement already satisfied: fsspec>=2023.5.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (2024.10.0)
Requirement already satisfied: packaging>=20.9 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (24.2)
Requirement already satisfied: tqdm>=4.42.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (4.67.1)
Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (4.12.2)
Requirement already satisfied: jsonpatch<2.0,>=1.33 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain-core<0.4.0,>=0.3.21->langchain) (1.33)
Requirement already satisfied: httpx<1,>=0.23.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (0.27.2)
Requirement already satisfied: orjson<4.0.0,>=3.9.14 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.12)
Requirement already satisfied: requests-toolbelt<2.0.0,>=1.0.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (1.0.0)
Requirement already satisfied: annotated-types>=0.6.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from pydantic<3.0.0,>=2.7.4->langchain) (0.7.0)
Requirement already satisfied: pydantic-core==2.23.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from pydantic<3.0.0,>=2.7.4->langchain) (2.23.4)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (1.26.20)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (2024.8.30)
Requirement already satisfied: torch>=1.11.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (2.5.1)
Requirement already satisfied: scikit-learn in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (1.5.2)
Requirement already satisfied: scipy in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (1.13.1)
Requirement already satisfied: Pillow in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (11.0.0)
Requirement already satisfied: greenlet!=0.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.1.1)
Requirement already satisfied: regex!=2019.12.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from transformers>=4.39.0->langchain_huggingface) (2024.11.6)
Requirement already satisfied: safetensors>=0.4.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from transformers>=4.39.0->langchain_huggingface) (0.4.5)
Requirement already satisfied: anyio in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (4.6.2.post1)
Requirement already satisfied: httpcore==1.* in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.0.7)
Requirement already satisfied: sniffio in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.3.1)
Requirement already satisfied: h11<0.15,>=0.13 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (0.14.0)
Requirement already satisfied: jsonpointer>=1.9 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.4.0,>=0.3.21->langchain) (3.0.0)
Requirement already satisfied: networkx in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.2.1)
Requirement already satisfied: jinja2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.1.4)
Requirement already satisfied: sympy==1.13.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sympy==1.13.1->torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (1.3.0)
Requirement already satisfied: colorama in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tqdm>=4.42.1->huggingface-hub>=0.23.0->langchain_huggingface) (0.4.6)
Requirement already satisfied: joblib>=1.2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from scikit-learn->sentence-transformers>=2.6.0->langchain_huggingface) (1.4.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from scikit-learn->sentence-transformers>=2.6.0->langchain_huggingface) (3.5.0)
Requirement already satisfied: exceptiongroup>=1.0.2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from anyio->httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.2.2)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from jinja2->torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.0.2)
Credentials
We want to use HuggingFace
so we have to get the HuggingFace API Key
import getpass
import os
if "HUGGINGFACE_API_KEY" not in os.environ:
os.environ["HUGGINGFACE_API_KEY"] = getpass.getpass("HuggingFace API Key:")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Initialization
from langchain_community.vectorstores.falkordb_vector import FalkorDBVector
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
You can use FalkorDBVector locally with docker. See installation instruction
host = "localhost"
port = 6379
Or you can use FalkorDBVector with FalkorDB Cloud
# E.g
# host = "r-6jissuruar.instance-zwb082gpf.hc-v8noonp0c.europe-west1.gcp.f2e0a955bb84.cloud"
# port = 62471
# username = "falkordb" # SET ON FALKORDB CLOUD
# password = "password" # SET ON FALKORDB CLOUD
vector_store = FalkorDBVector(host=host, port=port, embedding=HuggingFaceEmbeddings())
Manage vector store
Add items to vector store
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"source": "https://example.com"})
document_2 = Document(page_content="bar", metadata={"source": "https://example.com"})
document_3 = Document(page_content="baz", metadata={"source": "https://example.com"})
documents = [document_1, document_2, document_3]
vector_store.add_documents(documents=documents, ids=["1", "2", "3"])
['1', '2', '3']
Update items in vector store
updated_document = Document(
page_content="qux", metadata={"source": "https://another-example.com"}
)
vector_store.update_documents(document_id="1", document=updated_document)
Delete items from vector store
vector_store.delete(ids=["3"])
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Performing a simple similarity search can be done as follows:
results = vector_store.similarity_search(
query="thud", k=1, filter={"source": "https://another-example.com"}
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
* qux [{'text': 'qux', 'id': '1', 'source': 'https://another-example.com'}]
If you want to execute a similarity search and receive the corresponding scores you can run:
results = vector_store.similarity_search_with_score(query="bar")
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
* [SIM=0.000001] bar [{'text': 'bar', 'id': '2', 'source': 'https://example.com'}]
Query by turning into retriever
You can also transform the vector store into a retriever for easier usage in your chains.
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("thud")
[Document(metadata={'text': 'qux', 'id': '1', 'source': 'https://another-example.com'}, page_content='qux')]
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
- Tutorials: working with external knowledge
- How-to: Question and answer with RAG
- Retrieval conceptual docs
API reference
For detailed documentation of all FalkorDBVector
features and configurations head to the API reference: https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.falkordb_vector.FalkorDBVector.html
Related
- Vector store conceptual guide
- Vector store how-to guides